
 pre
lim

ina
ry

 >VCU+

Feb 5, 2025

 Plugin Reference Manual

 .

https://dynamlabs.com/

 pre
lim

ina
ry

 Overview
 Plugins enable users to add custom functionality to the VCU+ while keeping its core firmware
 lightweight and efficient. By allowing customization without modifying the core, plugins ensure the
 system remains maintainable and adaptable to a wide range of application-specific needs.

 With plugins, users can implement tailored features, such as custom control algorithms or data
 processing workflows, without the overhead of embedding these directly into the core firmware.
 This flexibility empowers users to quickly adapt the VCU to their unique requirements.

 This reference manual provides a comprehensive guide to using plugins, including an overview of
 available functions, configuration options, and instructions for writing, testing, and deploying
 custom logic.

 The plugin language is Lua , chosen for its simplicity, low learning curve, and lightweight nature. Lua is
 widely regarded for its ease of integration into embedded systems and its ability to execute scripts
 efficiently, making it ideal for the resource-constrained environment of the VCU+. Its straightforward
 syntax and minimal setup allow both novice and experienced developers to quickly write and test
 custom logic.
 For more information about Lua, refer to the official documentation:

 • Official Lua Documentation

 This reference manual provides a comprehensive guide to using plugins, including an overview of
 available functions, configuration options, and instructions for writing, testing, and deploying custom
 Lua-based logic.

 DYNAMLABS.COM

https://www.lua.org/docs.html
https://dynamlabs.com/

 pre
lim

ina
ry

 Functions
 The following is a list of all currently supported functions available for use in plugins. These functions
 form the building blocks for creating powerful and highly customized logic within your plugins, giving
 you full control over VCU outputs, sensor data, communication, and control algorithms. The list is
 continuously growing as more functions are added.

 setOut(pin)
 This function sets the specified output pin to its active state:

 • High-Side Outputs : The pin transitions to a high state (voltage applied).

 • Low-Side Outputs : The pin transitions to a low state (connected to ground).
 Example Use Case : Activating a high-side output pin to power a relay or a low-side output pin for devices
 requiring a ground-side switch.
 Sample Code :
 -- Activate a high-side output 1
 setOut(HS1)
 -- Activate a low-side output 2
 setOut(LS2)

 clearOut(pin)
 This function clears the specified output pin, setting it to its inactive state:

 • High-Side Outputs : The pin transitions to a low state (voltage removed).

 • Low-Side Outputs : The pin transitions to a high state (disconnected from ground).
 Example Use Case : Deactivating a relay or turning off a light connected to the VCU.
 Sample Code :
 -- Deactivate the high-side output 1
 clearOut(HS1)
 -- Deactivate the low-side output 2
 clearOut(LS2)

 DYNAMLABS.COM

https://dynamlabs.com/

 pre
lim

ina
ry

 getSensor(sensorID)
 Retrieves the current value of the specified sensor. This allows the plugin to access real-time data, such
 as temperature, speed, or pressure.
 Returns nil in case of an invalid Sensor state. Ensure to check for return value before using the value for
 arithmetic operations.
 Example Use Case : Reading a temperature sensor value for dynamic control logic.
 List of available Sensors:

 ● AcceleratorPedal
 ● AcceleratorPedalPrimary
 ● AcceleratorPedalSecondary
 ● BatteryCurrent
 ● BatteryVoltage
 ● BatteryTemp
 ● DI_inverterTemp
 ● DI_statorTemp
 ● DI_heatSinkTemp
 ● DI_inletTemp
 ● DIS_inverterTemp
 ● DIS_statorTemp
 ● DIS_heatSinkTemp
 ● DIS_inletTemp
 ● Temp1
 ● Temp2

 ● Temp3
 ● Temp4
 ● RPM
 ● Din1
 ● Din2
 ● Din3
 ● Din4
 ● Din5
 ● Din6
 ● Din7
 ● Din8
 ● Din9
 ● Din10
 ● Din11
 ● Din12
 ● Din13
 ● Din14
 ● Din15

 ● LVBatt
 ● CAN_KEYPAD_B1
 ● CAN_KEYPAD_B2
 ● CAN_KEYPAD_B3
 ● CAN_KEYPAD_B4
 ● CAN_KEYPAD_B5
 ● CAN_KEYPAD_B6
 ● CAN_KEYPAD_B7
 ● CAN_KEYPAD_B8
 ● Ignition
 ● Ain1
 ● Ain2
 ● Ain3
 ● Ain4
 ● Ain5
 ● Ain6
 ● Ain7
 ● Ain8
 ● Gear

 Sample Code :
 -- Retrieve the value from Temperature sensor 1
 local temperature = getSensor(Temp1)
 -- Retrieve Accelerator pedal value and use it in logic
 local pedal = getSensor(AcceleratorPedal)

 DYNAMLABS.COM

https://dynamlabs.com/

 pre
lim

ina
ry

 sendCAN(canBus, canID, data)
 Sends a CAN message with the specified ID and data payload. Enables communication with other devices
 on the CAN bus.

 ● canBus : The physical bus to send the message on. (ACC_CAN or AUX_CAN)
 ● canID : The identifier of the CAN message.
 ● data : The payload, typically a byte array.

 Example Use Case : Sending commands to external controllers or reporting custom data.
 Sample Code :
 -- Send a CAN message on ACC_CAN with ID 0x123 and data payload {0x01, 0x02, 0x03}
 sendCAN(ACC_CAN , 0x123 , { 0x01 , 0x02 , 0x03 })
 -- Example of sending a command to an external device on the AUX_CAN bus
 sendCAN(AUX_CAN , 0x200 , { 0xFF , 0xAA , 0x55 })

 newPID(p, i, d)
 Creates a new PID controller instance with the specified tuning parameters.

 • p : Proportional gain.

 • i : Integral gain.

 • d : Derivative gain.
 Example Use Case : Initializing a PID controller to maintain target speeds or stabilize temperatures.
 Sample Code :
 -- Create a PID controller with P=1.0, I=0.5, D=0.1
 local pid = newPID(1.0 , 0.5 , 0.1)

 pid:compute(target, actual)
 Computes the control output of an existing PID controller based on a target value and the actual
 measured value. This function is supposed to be called in a loop.

 • target : The desired setpoint value.

 • actual : The current measured value.
 Example Use Case : Adjusting a motor speed to match the desired target speed.
 Sample Code :
 -- Create a PID controller
 local pid = newPID(1.0 , 0.5 , 0.1)
 -- Compute the control output
 local targetTemp = 100 -- Target temperature
 local actualTemp = getSensor(Temp1) -- Assume Temp1 provides actual temperature
 local controlOutput = pid:compute(targetTemp, actualTemp)

 DYNAMLABS.COM

https://dynamlabs.com/

 pre
lim

ina
ry

 setPWMFreq(channel, frequency)
 Sets the frequency of the specified PWM (Pulse Width Modulation) channel in Hertz (Hz). This
 determines how many PWM cycles are generated per second.

 • channel : The PWM channel to configure (e.g., PWM1, PWM2).

 • frequency : The desired frequency in Hertz. Higher frequencies provide smoother outputs but
 may reduce resolution for duty cycle adjustments.

 Example Use Case : Setting the PWM frequency for a fan or pump controller.

 print(string)
 Prints a message to the plugin log inside of Bolt.

 • string : String to print

 Example Use Case : Debug print statement during plugin development.
 Sample Code :
 local ain3_val = getSensor(Ain3)
 print ("Ain3 Value: " .. ain_val)

 DYNAMLABS.COM

https://dynamlabs.com/

